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Abstract. Relational hypersubstitutions for algebraic systems are
mappings which map operation symbols to terms and map relation
symbols to relational terms preserving arities. The set of all rela-
tional hypersubstitutions for algebraic systems together with a bi-
nary operation defined on this set forms a monoid. In this paper, we
determine all unit-regular elements on this monoid of type ((m), (n))
for arbitrary natural numbers m,n > 2.
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1. Introduction

The notation of a hypersubstitution of type 7 for universal algebras
was introduced by K. Denecke et al. [2]. To recall the concept of a hyper-
substitution of type 7, we recall first the concept of an m-ary term of type
7. Let (f;)icr be a sequence of operation symbols indexed by the set 1. For
every operation symbol f;, we assign a natural number n; € N* := N\ {0},
called the arity of f;. The sequence 7 = (n;);cs of arities of f; is called the

type.

Let X := {x1,...,Zn,...} be a countably infinite set of symbols called
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variables. For each n > 1, let X,,, :={z1,..., 2 }. An m-ary term of type

T is defined inductively as follows.
(i) Every variable x € X, is an m-ary term of type 7.

(ii) If ¢1,...,t,, are m-ary terms of type T and f; is an n;-ary operation

symbol, then f;(t1,...,t,,) is an m-ary term of type 7.

Let W, (X,,) be the set of all m-ary terms of type 7 which contains x4, . .., Z,
and is closed under finite application of (ii) and let W..(X) := U W (Xm)
meNT+

be the set of all terms of type 7.

A hypersubstitution of type 7 is a mapping o : {f;|i € I} — W, (X)
preserving the arity. Let Hyp(7) be the set of all hypersubstitutions of
type 7. To define a binary operation on this set, we define inductively the
concept of a superposition of terms S]" : W, (X)) x (W, (X,,))™ — W (X,)

as follows.
(i) I t =z, for 1 < k < 'm, then S (zk, S1,. .., Sm) := Sk-
(ll) Ift= fi(t].) ce 7tni)> then
Syt 815y Sm) = [i(ST (1,815 3 Sm)y -y S (Enis 815+ 5 Sm))-

For every ¢ € Hyp(7), we define a mapping ¢ : W.(X) — W,.(X) as

follows:
(i) olz] =2 € X,

(ii) alfi(t... tn,)] = S5 (a(fi),ota], ..., T[ts,]), for any n;-ary opera-
tion symbol f; and &[t;] are already defined for all 1 < j < mn;.

Further, a binary operation o on Hyp(7) is defined by oo, a = 6o,
where o denotes the usual composition of mappings. Then one can prove
that (Hyp(7),on,0:q) is a monoid, where o;4(f;) = fi(x1,x2, ..., xy,) is the

identity element.
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On the other hand, we can consider algebraic systems in the sense of

Mal’cev [5]. An algebraic system of type (, T/) is a triple
(Aa (fiA)iEIa (Vf)jEJ)

consisting of a nonempty set A, a sequence ( fi“‘),;e 1 of n;-ary operations
defined on A and a sequence (fyf) jeg of nj-ary relations on A, where 7 =
(n4)icr is a sequence of the arity of each operation f* and T = (nj)jer is
a sequence of the arity of each relation 7;-4. The pair (7, 7'/) is called the

type of an algebraic system, see more detail in [6], [7].

In 2008 [3], K. Denecke and D. Phusanga introduced the concept of a
hypersubstitution for algebraic systems which is a mapping that assigns an
operation symbol to a term and assigns a relation symbol to a formula which
preserve the arity. The set of all hypersubstitutions for algebraic systems of
type (7, 7'/) is denoted by Hyp(r, 7"). They defined an assosiative operation
o, on this set and proved that (Hyp(, T,), or,0;q) forms a monoid where

0iq is an identity hypersubstitution for algebraic systems.

In 2018, D. Phusanga and J. Koppitz [8] introduced the concept of a
relational hypersubstitution for algebraic systems of type (7,7’) and proved
that this set together with an assosiative binary operation and the identity
element forms a monoid. The aim of the present paper is to determine
the set of all unit-regular elements of relational hypersubstitutions of type

((m), (n)) for arbitrary natural numbers m,n > 2.

Let (7,7') be a type. An n-ary relational term of type (7,7’) and a

relational hypersubstitution for algebraic systems are defined as follows.

Definition 1 [6]. Let J be an indexed set. If j € J and t1,ta,...,tp,
are n—ary terms of type 7 and 7; is an nj;—ary relation symbol, then

vj(t1,t2, ..., ty,) is an n—ary relational term of type (7, 7'/).
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Let vF (. /) (X)) be the set of all n—ary relational terms of type (7, ’7'/)
and let vF, 1) (X) := UnenvF(; ,/)(Xn) be the set of all relational terms
of type (7, TI).

A relational hypersubstitution for algebraic systems of type (7, 7") is

a mapping
o {filieYU{y|jeJ} = W (X)UrFr,7)(X)

with o(f;) € Wr(Xy,) and o(v;) € vF, /) (Xn;). The set of all rela-

tional hypersubstitutions for algebraic systems of type (7, 7'/) is denoted by

Relhyp(r, 7).

To define a binary operation on this set, we give the concept of a
superposition of relational terms. A superposition of relational terms R :
(Wr(X) UYE(, 1) (X)) X (W (X)) = Wy (X)URE(y 1y (Xom) is defined
as follows, for t,t1,...,tm, € Wo(Xm), 81,--,8m € Wo(Xy),

(1) R’Zl(t?817"'78m) = S,;n(t,Sl,...,Syn),

(i) Ry (F, 81,0 58m) =7 (S0 (t1,81, -+ 38m)s -+, Sy (tnys 81,45 5m))-
Every relational hypersubstitution for algebraic systems ¢ can be ex-
tended to a mapping & : W (X) U~vF(, \(X) = Wr(X) UvEF,  (X) as

follows.
(i) olx;] ==, for i € N,

(i) olfiCte... tn))] := Sy (o(fi), 0lta], -, Oltn,]),
where ¢ € T and ty,...,t,, € W;(Xy,), i.e., any occurrence of the

variable ) in o(f;) is replaced by the term o[tg],1 < k < n,,

(iii) o[yj(s1...,8n,)] == Ry (o(7;),0[s1],...,0[sn,]), where j € J and
81,...,8n; € W7(Xy), i.e., any occurrence of the variable x, in o(v;)

is replaced by the term &[sx],1 < k < nj;.
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We define a binary operation o, on Relhyp(T, T/) by co,a: =60«

where o is the usual composition of mappings and o, « € Relhyp(r, 7'/).

Let 0,4 be the relational hypersubstitution which maps each m;-ary oper-
ation symbol f; to the term f;(z1,...,%m,) and maps each n;-ary relation
symbol 7; to the relational term 7;(x1,...,2y;). D. Phusanga and J. Kop-
pitz [3] proved that (Relhyp(r,T ),on,0iq) is a monoid.

Definition 2. Let (7,7") = ((m), (n)) be a type with an m-ary operation
symbol f and an n-ary relation symbol . Let o, ¢ be the relational hyper-
substitution o of type ((m), (n)) with maps f to the term ¢ € W(,,)(X;n)
and maps 7 to the relational term F' € vF{((1),(n))(Xn)-

A relational hypersubstitution for algebraic systems of type ((m), (n))
is called a projection relational hypersubstitution for algebraic systems of

type ((m), (n)) if the term oy p(f) is a variable.

Let ProjR((m),(n)) be the set of all projection relational hypersubstitu-
tions for algebraic systems of type ((m), (n)).

A relational hypersubstitution for algebraic systems of type ((m), (n))
is called a pre-relational hypersubstitution for algebraic systems of type

((m), (n)) if the term oy p(f) is not a variable.

Let PreR((m),(n)) be the set of all pre-relational hypersubstitutions for
algebraic systems of type ((m), (n)).

Proposition 1 [1]. The set ProjR((m),(n)) U{ciw}, PreR((m),(n)) are
submonoids of Relhyp((m), (n)).

In 2015, W. Wongpinit and S. Leeratanavalee [9] introduced the con-

cept of the © — most of terms as follows.

Definition 3 [9]. Let 7 = (m) be a type with an m-ary operation symbol
[yt € Wipy(X) and 1 <4 < m. An i —most(t) is defined inductively as
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follows:
(i) If ¢ is a variable, then ¢ — most(t) = t.

(ii) Ift = f(t1,...,tn) where t1,...,t, € W) (X), then i — most(t) :=

i — most(t;).

Example 1. Let 7 = (3) be a type, t = f(x3, f(z2,21,23), f(x3, 21, 22)).
Then 1 — most(t) = z3, 2 — most(t) = 2 — most(f(x2,x1,23)) = x1 and

3 — most(t) = 3 — most(f(z3,x1,22)) = Ta.
Lemma 1 [9]. Let s,t € W,y (X). If j — most(t) = vy, € Xy and k —
most(s) = x;, then j — most(di[s]) = z;.

The above lemma can be applied to any relational hypersubstitution

for algebraic systems of type ((m), (n)).

Let o r be a relational hypersubstitution for algebraic systems of type

((m), (n)), where t € Wy (Xon) and F € vF (), (n)) (Xn), 8 € Wiy (Xin)-

We have if i — most(t) = x;, then i — most(c;, p[s]) = j — most(s).
2. Unit-regular elements in Relhyp((m), (n))

Let (T, ’7'/) = ((m), (n)) be a type with an m—ary operation symbol f,
an n—ary relation symbol v, t € W,y (Xyn) and F' € vE((1m),(n))(Xn), We

denote

var(t):= the set of all variables occurring in the term ¢.

var(F):= the set of all variables occurring in the relational term F'.
Let 04 r € Relhyp((m), (n)), we denote

Rx :={oyp |t =x;and F = (s, ..., S) withvar(F') = {xp,, ..., Ty, } such
that j — most(s, ) = @y, for all k = 1,...,0 and some distinct by, ...b €

{1,...,n} where j € {1,...,m}};
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Ry :={oyp |t = f(t1,...,tm) and F = ~(s1, ..., 8,) with var(t) =
{Zays s Tay } and var(F) = {xp,,...;zp, } such that t,, = x4, and sy, =
ay for alli =1,...,k,j = 1,...,1 for some distinct a},...,a), € {1,...,m} and
for some distinct b}, ...,b; € {1,...,n}}.

In 2019, J. Daengsaen and S. Leeratanavalee [6] characterized the

regular relational hypersubstitutions for algebraic systems of type (7,7") =
((m), (n)).

Lemma 2. Lett = x; € Xy, F' = ¥(51,...,50) € Y F((m),(n))(Xn) and
oi,r € ProjR((m), (n)). Then o F is not unit.

Proof. Assume t = z; € X,;, and F' = (51, ..., 8n) € VF((m),(n))(Tn). Let
ou,u € Relhyp((m), (n)).

Casel.o, g € ProjR((m), (n)),ie,u=1a; € X,y and H = y(h1,..., hy,) €
YF(m),(n))(Xn). Then, (o4,p or 0u,u)(f) = 04, rlu] = 0¢,rlz;] = ;.

Case II. 0,y € PreR((m),(n)), i.e., u = f(u1,...,;um) € W) (Xyn) and
H =v(h1,....hn) € YF((m),(n))(Xn)-

Consider

(01,7 o oum)(f) = 7 [f (U, s um)]

= Sy (t, o, p U1y e, Ot F[Um])
= Spy(xi, 0p, plut], .., Ot F[Um])
= 0y, r[ui

=x; € X

Thus oy F oy 0y g # 044 for all o, g € Relhyp((m), (n)). Therefore o, p is

not unit. 0

Lemma 3. Let oy € PreR((m),(n)). If ti € W) (Xm)\(Xom) for some
i€ {l,...,m} and s; € W) (Xn)\(Xyn) for some j € {1,...,n}, then o4
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is not unit.

Proof. Let t; € W) (Xm)\(Xon) forsomed € {1,...,m} and s; € Wiy, (Xn)\
(Xp) for some j € {1,..,n}. Let o, m € Relhyp((m),(n)) where u =
f(u1, ey um) S W(m)(Xm) and H = ’)/(hl, ey hn) S 'y]-"((m)’(n))(Xn).

Consider

(0,7 or oum)(f) = Orp[f(u1, ... um)]
= Sf,}(f(tl,...7tm),8t7p[u1],...,Gt,p[um])
= f(S:Z(tl,&@F[ul], veey 8,5,F[um]), ceey

S (tm, 0t Flu1], .., Ot 7 [Um]))-

Since t; € W) (Xin)\(Xim), 50 0t rluj] € Wiy (Xm)\(Xym) for all j €
{1,...,m}. Then (o,F oy o0 u)(f) # f(z1, ..., Tm) = dia(f), and

(ot,F o ou,m) (V) = Tt p[y(h1,s s )]
= Ry ((51, s 80), 01, p[h], o, Ot 7 [Pn])
= 7(52(817 at,F[hl}v seey at,F[hn])v ceey

Sy (Sns 0,7 [h]s s Ot FPn]))-

Since t; € W) (Xm)\(Xm), 50 G¢ rlhj] € Winy (Xm)\(Xm) for all i €
{1,...,n}. Then (orF or oum)(7) # f(x1, ..., Tn) = dia(7)-

Hence oy p o 0y,m # 0iq for all o, g € Relhyp((m), (n)). Therefore

o,F is not unit. O

Theorem 1. Let oy p € Relhyp((m), (n)). Then oy is unit if and only if
t= f(Tr), - Ta(m)) and F = y(84(1)s - Sp(n)) where 7, ¢ are bijections
on {1,....,m} and {1,...,n}, respectively.

Proof. Assume that oy p is a unit element. Then there exists o, g €

Relhyp((m), (n)) such that o p op 0y g = Tig = Ou i O O F.
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By Lemma 3, we get oy p,0um € Rr. Sot = f(t1,....,tm), u =
fug, ooy tyy) where t1, ooy by, Uty ooy U € {X1, ooy T } and F = (1, ..., $p )5

H = ~(hy,...,hy,) where $1,...,8n, h1, ..oy b € {21, .0y T}

Lett = f(2r(1), - Taim)), F = Y(5p(1)5 - Sp(n)) and u = f(xﬂl(l), ...,xﬂ/(m)),
H = 7(x¢/(1),...,x¢/(n)) where 7,7 are bijections on {1,...,m} and gb,d)'

are bijections on {1,...,n}.

Consider

oia = (04,7 op 0um)(f)
=0u,rlf (@ (1)) T ()]
= S (f(@a(1ys s Tr(m))s T (1y5 s T (m))
= [ (@) o T (om))
= (@ omy)s -+ T oy (m))

and

ia = (0w, or 01, 7)(f)

= 8u,H[f(x7r(1)a ceny ‘Tﬂ'(m))]

= Sg,zl(f(xwl(l)7 ceny l'ﬂ/ (m)), fEﬂ'(l), ceey ;L‘ﬂ.(m))

= f(@r i (1)) -+ T’ (m)))

= f(@(ron')(1)s = T(mon’ ) (m))-
Then mom = (1) =7 omand mom ,m o are bijections.

Next, we will show that 7 is a bijection. Let 7(i) = w(j) for some

i,j €{1,...,m}. Then (7 om)(i) = (7(i)) = 7 (7(j)) = (7 om)(j). Since
(7 om)(i) is one-to-one, i = j. Thus 7 is one-to-one.
Let i € {1,...,m}. Since (7 owl) is onto, there exists j € {1,...,m} such
that (7o 7r/)(j) = 4. Thus 7 is onto. So 7 is a bijection. Similary, we get ¢

is a bijection.
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Conversely, let oy, r € Rephyp((m), (n)) where t = f(2x(1), . Tr(m))

where 7 is a bijection. Then there exists 7 such that ror = (1) =7 o.

Let u= f(z./ (1), Tx’ (1)), then

(ot,F or oum)(f) = /J\t,F[f(xn—/(l)a e »Tﬂ’(m))]

= f(xw’(ﬂu))» ) fﬂw’(ﬂ(m)))
= f(z1, .., Tm)

= 0Oid
and

(o—uﬁH Or O—t,F)(f) = a-\U,I’I[f(l'w(l)v ey ‘r‘n'(m))]

= f(xﬂ(ﬂ/(l))’ e %(w/(m)))

= f(l'l, ,Qj‘m)
= Oid-
Similary, we get (o4, o 00, 1) (Y) = 0id = (Ou,z Or 01 F) (7). O

Lemma 4. Lett = x; € X, and F' = (51, ..., 8n) € VF((m),(n))(Xn) where
var(F)N X, = {xp,,...,xp, } and j — most(sb;) =xp,; J €{1,...,m} and
forallk =1,....1. Then oy o, 0y noronp = oy if and only if it satisfies

one of the following conditions:

(i) i=j;u= f(ui,..,um) where u; = x; and H = y(h1, ..., hy,) with
hy, = Ty forallk=1,...,1,

(ii)) i #j;u=ua; and H = v(hq, ..., hy,) with hy, = zy forallk=1,..,1.

Proof. Assume that (i), (ii) are not true, that is u; # x; and hy, # x; all

k=1,..,1. We will show that (o¢ r o 0 i o 01.7) (V) # 01,7 (7)-
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Consider

(04,7 O Ou. i1 Or 01, 7)(Y) = Ot p[Ou, [ F]]

= /O'\t,F[’Y(ala (XS an)]
where

a; = RZ(hi,a\%H[Sﬂ, ...,amH[Sn]) all 7= 1, N
= RZ(7(517 ceey Sn)a 82?1,7}7[0’1]7 ceey 8-’107‘,,F[an})
= (S, (s1,i — most(ai), ...,i — most(ay)), ...,
S (8n, i — most(ay), ..., i — most(ay))).
Since j — most(sb;) = ay, for all k =1,...,1, we have
Sy (i —most(sy, ), 0z, Flar], ..., 0z, rlan])
= S} (xp,,7 — most(ay), ...,i — most(ay,))
=i — most(ap,)
=i — most(Sy, (hv,, 0w, H[S1], s Ou H[Sn]))
= Sy (i — most(hy, ), i — most(Gy, m[s1]),
vy & — MOSL(Ty 11 [Sn]))-
Since u; # xj, by Lemma 1, we have
i —most(Gy,m[s;]) # i — most(sy ) = xp,
and
hbk 7é xb;,
so Sy (i — most(hy,),i — most(Gy m[s1]), ..., — most(Gy, m[sn])) # T, -
Thus (0,7 o 0u,1 or 01, F)(7) # 01,7 (7).

Conversely, let o, g € Relhyp((m), (n)) such that w = f(u1, ..., Um)
where u; = z; and H = y(h1, ..., hy,) with hy, = Ty forallk=1,..., 1.
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Consider

(01,7 or 0w or 0, F)(f) = 01 F[Ou u[t]] = O F[0u r[Ti]] = 2i = 51 F(f)
and
(Ut,F Op Ouy,H Or O't,F)(’Y) = a\'t,F[au,H['Y(Sla ceey Sn)]]
= a—t,F[RZ(’Y(hlv ey hn)7 8U,H[81]1 Ex) a\—u,H[snD]
= or,r[y(at, .., an)]

where a, = Sy(hp, Oy m[s1], .., Ou,m[sn]) for all p € {1,...,n}. Since j —

most(sy; ) = ap, and hy, = xy, for all k € {1,...,1}, we have

ap, = Sy (M, Ou 1 [S1]5 -y Ou, H [Sn)])
= Sy (v, Ou, 1 [S1]; s Toys s Tu,m [80]) 3 Where xp, € var(sy, ).
= Tp, .
Then

(Ut,F Op Ou,H ©Or O't,F)(’Y) = a'\t,F['Y(aly veey an)]
= RZ(F, /U\t’p[al], vy Thy, s ...,/U\t’p[an])

where xp, € var(sy, ) for all k=1,....1
=o1,r(7).
Therefore oy p is unit-regular. Similarly, (ii) can be proved as in (i). O

Lemma 5. Let t = f(t1,....tnm) € Wi (Xm) and F = y(s1,....,8n) €
YF(m).(n)) (Xn) such that var(t) N Xy = {Tay, oo, Tay, } with ty = x4, for
some a; € {1,....,m} ;i € {1,....k} and var(F) N X, = {xp,, ..., xp, } with
sy, = ay,; for some vy e{l,..,n} ;je{l,..,1}.

Then o4, F or Oy 1 Or 0 p = o p if and only if u = f(u1, ..., Um) which

Uy = Tafs ooy Uay, = To and H = y(ha, ..., hyn) which hy, = zy;, ... hp, =

1

xb;'
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Proof. Assume that o, g o, 04 g 0y 01 p = 0t .

Let u = f(u1,...;um). Suppose that us, € W) (Xm)\{Zq} for some i €
{1,....,k}. Let H =~(hq,..., h,). Suppose that hbj € W((m),(n))(Xn>\{xb;}
for some j € {1, ...,1}.

Consider
(04,7 or 0w, Or 01, 7)(f) = 01, p[Ou, ]

=01, r S (f(u1, .o, m), O, m[t1], vy Ou, H [Em])]

=0 r[f(wi, .., wpm)]
where
w; = S) (Wi, Oy, m[t1]s oo, Ou, H [Em])
= f(v1,...,0m,) where v; = S (t;, 0, p[w1), ..., O F[Wm])-
Since to; = xq,;1 € {1,...,k}, we have
oy = Sy (tay, O, plw1], -, Ot p [win]) = O p[wa,]-

Since wq;, = Sy (Ua,, Ou,mz[t1]s -, Ou,m [tm]) and u,, # Tqr, We have w,, #
Ouitar] = Tay. We get vor = 0y plwe,] # ¥4, and then f(vi,...,vm) # t,

this is a contradiction.
Hence u,, =z, for all i € {1,..., k}.

Similarly, we have
(Ut,F Or Ou,H ©Or Ut,F)(F)/) = O't,F(rY>'

Therefore hy, = Ty, for all j € {1,...,1}.
Conversely, let u = f(u1, ..., um) where uq, = x4 for all i € {1,...,k}
and h = vy(h1, ..., hy,) where hy, = Ty, for all j € {1,...,{}. Then (o4F or

Ou,H Or Ut,F)(f)
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=0 p[f(wi, ..., wn)] where w; = S) (u;, Oy g [t1], -y Ou s [tm])- Since uq, =
Tar, SO
Wa; = Sﬁ(uai»a\U,H[tl]a e 3u,H[tm])

= S:nn (-/L’a; s amH[tl]y ceey au,H[tm])

= 8u,H[ta;]

= xai
We get
3t7F[f<’LU1, 7’U)m)] = S:Z(f(tl, ..,tm),ﬁt)p[wl], ...73t7F[wm]) = f(th 7tm)

Hence (0¢,r oy 0w,z or 0¢,7)(f) = (01,7)(f)-

Similarly, we get (o¢,F or 0w, i or 0r.1)(Y) = (0¢,7)(7)- 0
Let 0y p € Relhyp((m), (n)), we denote

Ry = {owr |t = z; € X,;, and F = 7(s1,...,8,) with var(F) =

{xbu ey xbl}
such that i—most(sb;) =y, for allk = 1,...,1 and some distinct bll, ey b; €

{1,...,n} where i € {1,...,m}}.
Theorem 2. Ry URT is the set of all unit-reqular elements in Relhyp((m), (n)).

Proof. Let oy F € Ry URr.

Case I. oy € Ry. Then t = x; and F = v(s1,...,8,) € YF((m),(n)) (Xn)
with var(F) = {xp,, ..., Zp, } such that i—most(sb;c) =uayp, forallk=1,..,1

and some distinct bll, ...,bz € {l,..,n} where i € {1,...,m}.

Choose o, g € U(Relhyp((m), (n))) such that

u = f(ul, ,um) = f(xll«(l)’ ...,a:u(m))

and H = y(h1, ..., hn) = Y(Ty(1), s Tu(n)) for some p € Sy, v € S, such

/

that (i) =i and v(by) = by, ..., v(b,,) = by.
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Then u; = ;) = x; and Hy = T,y = Tb, for all j € {1,..,1}.
J J

By Lemma 4, we get

Ot,F Or Oy H Or Ot = Ot F-

CaseIl. 0y p € Ry wheret = f(t1,...,tm) and F' = y(s1, ..., $p) with var(t)
={%a,s -, T, } and var(F) = {as,, ..., xp, } such that t,; =z, and sy =
xp, forall i =1,....k,j=1,..,1 for some distinct all, ...,a;g € {1,...,m} and

for some distinct by, ..., b, € {1,...,n}.
Choose 0,,¢ € U(Relhyp((m), (n))) such that
v = f(vh "'7Um) = f(x,@’(l)v T ,'TB(WL))

and
G = 7(917 7gn) = 7(1'04(1)7 "'7xo¢(n))

for some g € S,,,a € S, such that

B(ar) = ay, ..., Blanm) = al,

and

’

a(by) = by, ..., a(b,) = by.

Then Vg = Tgly = Ta, for all 4 € {1,..,k} and Iy, = Tag,) = b for all
Jjed{l, .1}

By Lemma 5, we get
Ot,F Or Oy,G Or Ot,F = Ot F-

Hence o p is a unit-regular element in Relhyp((m), (n)). O
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3. Conclusion

In the present paper, we began with the definition of a relational
hypersubstitution for algebraic systems of type (7,7’) and introduced the

monoid (Relhyp(t,7’), 0, 0ia)-

Finally, we determined all unit-regular elements on the monoid(Relhyp

((m), (n)), op, 0:q) for arbitrary natural numbers m,n > 2.

We concluded that oy p € Relhyp((m), (n)) is unit-regular if and only

if o, p € Ry U Ry where
, X 1
R/X = {[Jt7F ‘t =x; € X,

and

F =~(s1,..., 8n) withvar(F) = {zp,, ..., T, }
such that i—most(sb;c) = a3, for all k =1,...,1 and somedistinct b/l, ey b; €
{1,...,n} wherei € {1,...,m}} and Ry :={ovp |t = f(t1,...,tm) and F =
Y(s1, ..y Sp) With var(t) = {zq,, ..., Ta, } and var(F) = {zp,, ..., Tp, } such that
ta; = Ta, and sy, =y, for alli =1,...,k,j =1, .., I for some distinct aly,...,ay

€ {1,...,m} and for some distinct b, ...,0; € {1,...,n}}.
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