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Abstract. Relational hypersubstitutions for algebraic systems are
mappings which map operation symbols to terms and map relation
symbols to relational terms preserving arities. The set of all rela-
tional hypersubstitutions for algebraic systems together with a bi-
nary operation defined on this set forms a monoid. In this paper, we
determine all unit-regular elements on this monoid of type ((m), (n))
for arbitrary natural numbers m,n ≥ 2.
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1. Introduction

The notation of a hypersubstitution of type τ for universal algebras

was introduced by K. Denecke et al. [2]. To recall the concept of a hyper-

substitution of type τ , we recall first the concept of an m-ary term of type

τ . Let (fi)i∈I be a sequence of operation symbols indexed by the set I. For

every operation symbol fi, we assign a natural number ni ∈ N+ := N \ {0},

called the arity of fi. The sequence τ = (ni)i∈I of arities of fi is called the

type.

Let X := {x1, . . . , xn, . . .} be a countably infinite set of symbols called
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variables. For each n ≥ 1, let Xm := {x1, . . . , xm}. An m-ary term of type

τ is defined inductively as follows.

(i) Every variable xk ∈ Xm is an m-ary term of type τ .

(ii) If t1, . . . , tni are m-ary terms of type τ and fi is an ni-ary operation

symbol, then fi(t1, . . . , tni
) is an m-ary term of type τ .

LetWτ (Xm) be the set of allm-ary terms of type τ which contains x1, . . . , xm

and is closed under finite application of (ii) and let Wτ (X) :=
⋃

m∈N+

Wτ (Xm)

be the set of all terms of type τ .

A hypersubstitution of type τ is a mapping σ : {fi|i ∈ I} → Wτ (X)

preserving the arity. Let Hyp(τ) be the set of all hypersubstitutions of

type τ . To define a binary operation on this set, we define inductively the

concept of a superposition of terms Smn : Wτ (Xm)×(Wτ (Xn))m →Wτ (Xn)

as follows.

(i) If t = xk for 1 ≤ k ≤ m, then Smn (xk, s1, . . . , sm) := sk.

(ii) If t = fi(t1, . . . , tni), then

Smn (t, s1, . . . , sm) := fi(S
m
n (t1, s1, . . . , sm), . . . , Smn (tni , s1, . . . , sm)).

For every σ ∈ Hyp(τ), we define a mapping σ̂ : Wτ (X) → Wτ (X) as

follows:

(i) σ̂[x] := x ∈ X,

(ii) σ̂[fi(t1 . . . , tni)] := Sni
m (σ(fi), σ̂[t1], . . . , σ̂[tni

]), for any ni-ary opera-

tion symbol fi and σ̂[tj ] are already defined for all 1 ≤ j ≤ ni.

Further, a binary operation ◦h on Hyp(τ) is defined by σ ◦hα = σ̂ ◦α,

where ◦ denotes the usual composition of mappings. Then one can prove

that (Hyp(τ), ◦h, σid) is a monoid, where σid(fi) = fi(x1, x2, ..., xni
) is the

identity element.
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On the other hand, we can consider algebraic systems in the sense of

Mal’cev [5]. An algebraic system of type (τ, τ
′
) is a triple

(A, (fAi )i∈I , (γ
A
j )j∈J)

consisting of a nonempty set A, a sequence (fAi )i∈I of ni-ary operations

defined on A and a sequence (γAj )j∈J of nj-ary relations on A, where τ =

(ni)i∈I is a sequence of the arity of each operation fAi and τ
′

= (nj)j∈J is

a sequence of the arity of each relation γAj . The pair (τ, τ
′
) is called the

type of an algebraic system, see more detail in [6], [7].

In 2008 [3], K. Denecke and D. Phusanga introduced the concept of a

hypersubstitution for algebraic systems which is a mapping that assigns an

operation symbol to a term and assigns a relation symbol to a formula which

preserve the arity. The set of all hypersubstitutions for algebraic systems of

type (τ, τ
′
) is denoted by Hyp(τ, τ

′
). They defined an assosiative operation

◦r on this set and proved that (Hyp(τ, τ
′
), ◦r, σid) forms a monoid where

σid is an identity hypersubstitution for algebraic systems.

In 2018, D. Phusanga and J. Koppitz [8] introduced the concept of a

relational hypersubstitution for algebraic systems of type (τ, τ ′) and proved

that this set together with an assosiative binary operation and the identity

element forms a monoid. The aim of the present paper is to determine

the set of all unit-regular elements of relational hypersubstitutions of type

((m), (n)) for arbitrary natural numbers m,n ≥ 2.

Let (τ, τ ′) be a type. An n-ary relational term of type (τ, τ ′) and a

relational hypersubstitution for algebraic systems are defined as follows.

Definition 1 [6]. Let J be an indexed set. If j ∈ J and t1, t2, ..., tnj

are n−ary terms of type τ and γj is an nj−ary relation symbol, then

γj(t1, t2, ..., tnj
) is an n−ary relational term of type (τ, τ

′
).
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Let γF(τ,τ ′ )(Xn) be the set of all n−ary relational terms of type (τ, τ
′
)

and let γF(τ,τ ′ )(X) := ∪n∈NγF(τ,τ ′ )(Xn) be the set of all relational terms

of type (τ, τ
′
).

A relational hypersubstitution for algebraic systems of type (τ, τ
′
) is

a mapping

σ : {fi| i ∈ I} ∪ {γj | j ∈ J} →Wτ (X) ∪ γF(τ, τ
′
)(X)

with σ(fi) ∈ Wτ (Xni
) and σ(γj) ∈ γF(τ,τ ′ )(Xnj

). The set of all rela-

tional hypersubstitutions for algebraic systems of type (τ, τ
′
) is denoted by

Relhyp(τ, τ
′
).

To define a binary operation on this set, we give the concept of a

superposition of relational terms. A superposition of relational terms Rmn :

(Wτ (X)∪ γF(τ,τ ′ )(Xm))× (Wτ (Xn))m →Wτ (X)∪ γF(τ,τ ′ )(Xm) is defined

as follows, for t, t1, . . . , tmi
∈Wτ (Xm), s1, . . . , sm ∈Wτ (Xn),

(i) Rmn (t, s1, . . . , sm) := Smn (t, s1, . . . , sm),

(ii) Rmn (F, s1, . . . , sm) := γj(S
m
n (t1, s1, . . . , sm), . . . , Smn (tnj

, s1, . . . , sm)).

Every relational hypersubstitution for algebraic systems σ can be ex-

tended to a mapping σ̂ : Wτ (X) ∪ γF(τ,τ ′ )(X) → Wτ (X) ∪ γF(τ,τ ′ )(X) as

follows.

(i) σ̂[xi] := xi for i ∈ N,

(ii) σ̂[fi(t1 . . . , tni
)] := Sni

m (σ(fi), σ̂[t1], . . . , σ̂[tni
]),

where i ∈ I and t1, . . . , tni
∈ Wτ (Xm), i.e., any occurrence of the

variable xk in σ(fi) is replaced by the term σ̂[tk], 1 ≤ k ≤ ni,

(iii) σ̂[γj(s1 . . . , snj )] := Rnj
n (σ(γj), σ̂[s1], . . . , σ̂[snj ]), where j ∈ J and

s1, . . . , snj
∈Wτ (Xn), i.e., any occurrence of the variable xk in σ(γj)

is replaced by the term σ̂[sk], 1 ≤ k ≤ nj .
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We define a binary operation ◦r on Relhyp(τ, τ
′
) by σ ◦r α := σ̂ ◦ α

where ◦ is the usual composition of mappings and σ, α ∈ Relhyp(τ, τ
′
).

Let σid be the relational hypersubstitution which maps each mi-ary oper-

ation symbol fi to the term fi(x1, . . . , xmi) and maps each nj-ary relation

symbol γj to the relational term γj(x1, . . . , xnj
). D. Phusanga and J. Kop-

pitz [3] proved that (Relhyp(τ, τ
′
), ◦h, σid) is a monoid.

Definition 2. Let (τ, τ ′) = ((m), (n)) be a type with an m-ary operation

symbol f and an n-ary relation symbol γ. Let σt,F be the relational hyper-

substitution σ of type ((m), (n)) with maps f to the term t ∈ W(m)(Xm)

and maps γ to the relational term F ∈ γF((m),(n))(Xn).

A relational hypersubstitution for algebraic systems of type ((m), (n))

is called a projection relational hypersubstitution for algebraic systems of

type ((m), (n)) if the term σt,F (f) is a variable.

Let ProjR((m), (n)) be the set of all projection relational hypersubstitu-

tions for algebraic systems of type ((m), (n)).

A relational hypersubstitution for algebraic systems of type ((m), (n))

is called a pre-relational hypersubstitution for algebraic systems of type

((m), (n)) if the term σt,F (f) is not a variable.

Let PreR((m), (n)) be the set of all pre-relational hypersubstitutions for

algebraic systems of type ((m), (n)).

Proposition 1 [1]. The set ProjR((m), (n)) ∪ {σid}, PreR((m), (n)) are

submonoids of Relhyp((m), (n)).

In 2015, W. Wongpinit and S. Leeratanavalee [9] introduced the con-

cept of the i−most of terms as follows.

Definition 3 [9]. Let τ = (m) be a type with an m-ary operation symbol

f , t ∈ W(m)(X) and 1 ≤ i ≤ m. An i −most(t) is defined inductively as
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follows:

(i) If t is a variable, then i−most(t) = t.

(ii) If t = f(t1, . . . , tn) where t1, . . . , tn ∈ W(m)(X), then i−most(t) :=

i−most(ti).

Example 1. Let τ = (3) be a type, t = f(x3, f(x2, x1, x3), f(x3, x1, x2)).

Then 1 − most(t) = x3, 2 − most(t) = 2 − most(f(x2, x1, x3)) = x1 and

3−most(t) = 3−most(f(x3, x1, x2)) = x2.

Lemma 1 [9]. Let s, t ∈ W(m)(X). If j − most(t) = xk ∈ Xm and k −

most(s) = xi, then j −most(σ̂t[s]) = xi.

The above lemma can be applied to any relational hypersubstitution

for algebraic systems of type ((m), (n)).

Let σt,F be a relational hypersubstitution for algebraic systems of type

((m), (n)), where t ∈ W(m)(Xm) and F ∈ γF((m),(n))(Xn), s ∈ W(m)(Xm).

We have if i−most(t) = xj , then i−most(σ̂t,F [s]) = j −most(s).

2. Unit-regular elements in Relhyp((m), (n))

Let (τ, τ
′
) = ((m), (n)) be a type with an m−ary operation symbol f ,

an n−ary relation symbol γ, t ∈ W(m)(Xm) and F ∈ γF((m),(n))(Xn), we

denote

var(t):= the set of all variables occurring in the term t.

var(F ):= the set of all variables occurring in the relational term F .

Let σt,F ∈ Relhyp((m), (n)), we denote

RX := {σt,F |t = xi and F = γ(s1, ..., sn) with var(F ) = {xb1 , ..., xbl} such

that j − most(sb′k) = xbk for all k = 1, ..., l and some distinct b
′

1, ..., b
′

l ∈

{1, ..., n} where j ∈ {1, ...,m}};
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RT := {σt,F | t = f(t1, . . . , tm) and F = γ(s1, ..., sn) with var(t) =

{xa1 , ..., xak} and var(F ) = {xb1 , ..., xbl} such that ta′i = xai and sb′j =

xbj for all i = 1, ..., k, j = 1, ..., l for some distinct a′1, ..., a
′
k ∈ {1, ...,m} and

for some distinct b′1, ..., b
′
l ∈ {1, ..., n}}.

In 2019, J. Daengsaen and S. Leeratanavalee [6] characterized the

regular relational hypersubstitutions for algebraic systems of type (τ, τ ′) =

((m), (n)).

Lemma 2. Let t = xi ∈ Xm, F = γ(s1, ..., sn) ∈ γF((m),(n))(Xn) and

σt,F ∈ ProjR((m), (n)). Then σt,F is not unit.

Proof. Assume t = xi ∈ Xm and F = γ(s1, ..., sn) ∈ γF((m),(n))(xn). Let

σu,H ∈ Relhyp((m), (n)).

Case I. σu,H ∈ ProjR((m), (n)), i.e., u = xj ∈ Xm andH = γ(h1, ..., hn) ∈

γF((m),(n))(Xn). Then, (σt,F ◦r σu,H)(f) = σ̂t,F [u] = σ̂t,F [xj ] = xj .

Case II. σu,H ∈ PreR((m), (n)), i.e., u = f(u1, ..., um) ∈ W(m)(Xm) and

H = γ(h1, ..., hn) ∈ γF((m),(n))(Xn).

Consider

(σt,F ◦r σu,H)(f) = σ̂t,F [f(u1, ..., um)]

= Smm(t, σ̂t,F [u1], ..., σ̂t,F [um])

= Smm(xi, σ̂t,F [u1], ..., σ̂t,F [um])

= σ̂t,F [ui]

= xl ∈ Xm.

Thus σt,F ◦r σu,H 6= σid for all σu,H ∈ Relhyp((m), (n)). Therefore σt,F is

not unit.

Lemma 3. Let σt,F ∈ PreR((m), (n)). If ti ∈ W(m)(Xm)\(Xm) for some

i ∈ {1, ...,m} and sj ∈ W(m)(Xn)\(Xn) for some j ∈ {1, ..., n}, then σt,F
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is not unit.

Proof. Let ti ∈W(m)(Xm)\(Xm) for some i ∈ {1, ...,m} and sj ∈W(m)(Xn)\

(Xn) for some j ∈ {1, ..., n}. Let σu,H ∈ Relhyp((m), (n)) where u =

f(u1, ..., um) ∈W(m)(Xm) and H = γ(h1, ..., hn) ∈ γF((m),(n))(Xn).

Consider

(σt,F ◦r σu,H)(f) = σ̂t,F [f(u1, ..., um)]

= Smm(f(t1, ..., tm), σ̂t,F [u1], ..., σ̂t,F [um])

= f(Smm(t1, σ̂t,F [u1], ..., σ̂t,F [um]), ...,

Smm(tm, σ̂t,F [u1], ..., σ̂t,F [um])).

Since ti ∈ W(m)(Xm)\(Xm), so σ̂t,F [uj ] ∈ W(m)(Xm)\(Xm) for all j ∈

{1, ...,m}. Then (σt,F ◦r σu,H)(f) 6= f(x1, ..., xm) = σid(f), and

(σt,F ◦r σu,H)(γ) = σ̂t,F [γ(h1, ..., hn)]

= Rnn(γ(s1, ..., sn), σ̂t,F [h1], ..., σ̂t,F [hn])

= γ(Snn(s1, σ̂t,F [h1], ..., σ̂t,F [hn]), ...,

Snn(sn, σ̂t,F [h1], ..., σ̂t,F [hn])).

Since ti ∈ W(m)(Xm)\(Xm), so σ̂t,F [hj ] ∈ W(m)(Xm)\(Xm) for all i ∈

{1, ..., n}. Then (σt,F ◦r σu,H)(γ) 6= f(x1, ..., xn) = σid(γ).

Hence σt,F ◦r σu,H 6= σid for all σu,H ∈ Relhyp((m), (n)). Therefore

σt,F is not unit.

Theorem 1. Let σt,F ∈ Relhyp((m), (n)). Then σt,F is unit if and only if

t = f(xπ(1), ..., xπ(m)) and F = γ(sφ(1), ..., sφ(n)) where π, φ are bijections

on {1, ...,m} and {1, ..., n}, respectively.

Proof. Assume that σt,F is a unit element. Then there exists σu,H ∈

Relhyp((m), (n)) such that σt,F ◦r σu,H = σid = σu,H ◦r σt,F .



All unit-regular elements of relational hypersubstitutions 65

By Lemma 3, we get σt,F , σu,H ∈ RT . So t = f(t1, ..., tm), u =

f(u1, ..., um) where t1, ..., tm, u1, ..., um ∈ {x1, ..., xm} and F = γ(s1, ..., sn),

H = γ(h1, ..., hn) where s1, ..., sn, h1, ..., hn ∈ {x1, ..., xn}.

Let t = f(xπ(1), ..., xπ(m)), F = γ(sφ(1), ..., sφ(n)) and u = f(xπ′ (1), ..., xπ′ (m)),

H = γ(xφ′ (1), ..., xφ′ (n)) where π, π
′

are bijections on {1, ...,m} and φ, φ
′

are bijections on {1, ..., n}.

Consider

σid = (σt,F ◦r σu,H)(f)

= σ̂t,F [f(xπ′ (1), ..., xπ′ (m))]

= Smm(f(xπ(1), ..., xπ(m)), xπ′ (1), ..., xπ′ (m))

= f(xπ′ (π(1)), ..., xπ′ (π(m)))

= f(x(π′◦π)(1), ..., x(π′◦π)(m))

and

σid = (σu,H ◦r σt,F )(f)

= σ̂u,H [f(xπ(1), ..., xπ(m))]

= Smm(f(xπ′ (1), ..., xπ′ (m)), xπ(1), ..., xπ(m))

= f(xπ(π′ (1)), ..., xπ(π′ (m)))

= f(x(π◦π′ )(1), ..., x(π◦π′ )(m)).

Then π ◦ π
′

= (1) = π
′
◦ π and π ◦ π

′
, π

′
◦ π are bijections.

Next, we will show that π is a bijection. Let π(i) = π(j) for some

i, j ∈ {1, ...,m}. Then (π
′
◦π)(i) = π

′
(π(i)) = π

′
(π(j)) = (π

′
◦π)(j). Since

(π
′
◦ π)(i) is one-to-one, i = j. Thus π is one-to-one.

Let i ∈ {1, ...,m}. Since (π ◦ π
′
) is onto, there exists j ∈ {1, ...,m} such

that (π ◦ π
′
)(j) = i. Thus π is onto. So π is a bijection. Similary, we get φ

is a bijection.
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Conversely, let σt,F ∈ Rephyp((m), (n)) where t = f(xπ(1), ..., xπ(m))

where π is a bijection. Then there exists π
′

such that π ◦ π
′

= (1) = π
′
◦ π.

Let u = f(xπ′ (1), ..., xπ′ (m)), then

(σt,F ◦r σu,H)(f) = σ̂t,F [f(xπ′ (1), ..., xπ′ (m))]

= f(xπ′ (π(1)), ..., xπ′ (π(m)))

= f(x1, ..., xm)

= σid

and

(σu,H ◦r σt,F )(f) = σ̂u,H [f(xπ(1), ..., xπ(m))]

= f(xπ(π′ (1)), ..., xπ(π′ (m)))

= f(x1, ..., xm)

= σid.

Similary, we get (σt,F ◦r σu,H)(γ) = σid = (σu,H ◦r σt,F )(γ).

Lemma 4. Let t = xi ∈ Xm and F = γ(s1, ..., sn) ∈ γF((m),(n))(Xn) where

var(F ) ∩ Xn = {xb1 , ..., xbl} and j −most(sb′k) = xbk ; j ∈ {1, ...,m} and

for all k = 1, ..., l. Then σt,F ◦r σu,H ◦r σt,F = σt,F if and only if it satisfies

one of the following conditions:

(i) i = j; u = f(u1, ..., um) where uj = xj and H = γ(h1, ..., hn) with

hbk = xb′k
for all k = 1, ..., l,

(ii) i 6= j; u = xj and H = γ(h1, ..., hn) with hbk = xb′k
for all k = 1, ..., l.

Proof. Assume that (i), (ii) are not true, that is uj 6= xj and hbk 6= xb′k all

k = 1, ..., l. We will show that (σt,F ◦r σu,H ◦r σt,F )(γ) 6= σt,F (γ).
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Consider

(σt,F ◦r σu,H ◦r σt,F )(γ) = σ̂t,F [σ̂u,H [F ]]

= σ̂t,F [γ(a1, ..., an)]

where

ai = Rnn(hi, σ̂u,H [s1], ..., σ̂u,H [sn]) all i = 1, ..., n

= Rnn(γ(s1, ..., sn), σ̂xi,F [a1], ..., σ̂xi,F [an])

= γ(Snn(s1, i−most(a1), ..., i−most(an)), ...,

Snn(sn, i−most(a1), ..., i−most(an))).

Since j −most(sb′k) = xbk for all k = 1, ..., l, we have

Snn(i−most(sb′k), σ̂xi,F [a1], ..., σ̂xi,F [an])

= Snn(xbk , i−most(a1), ..., i−most(an))

= i−most(abk)

= i−most(Snn(hbk , σ̂u,H [s1], ..., σ̂u,H [sn]))

= Snn(i−most(hbk), i−most(σ̂u,H [s1]),

..., i−most(σ̂u,H [sn])).

Since uj 6= xj , by Lemma 1, we have

i−most(σ̂u,H [sj ]) 6= i−most(sb′k) = xbk

and

hbk 6= xb′k ,

so Snn(i−most(hbk), i−most(σ̂u,H [s1]), ..., i−most(σ̂u,H [sn])) 6= xbk .

Thus (σt,F ◦r σu,H ◦r σt,F )(γ) 6= σt,F (γ).

Conversely, let σu,H ∈ Relhyp((m), (n)) such that u = f(u1, ..., um)

where uj = xj and H = γ(h1, ..., hn) with hbk = xb′k
for all k = 1, ..., l.
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Consider

(σt,F ◦r σu,H ◦r σt,F )(f) = σ̂t,F [σ̂u,H [t]] = σ̂t,F [σ̂u,H [xi]] = xi = σ̂t,F (f)

and

(σt,F ◦r σu,H ◦r σt,F )(γ) = σ̂t,F [σ̂u,H [γ(s1, ..., sn)]]

= σ̂t,F [Rnn(γ(h1, ..., hn), σ̂u,H [s1], ..., σ̂u,H [sn])]

= σ̂t,F [γ(a1, ..., an)]

where ap = Snn(hp, σ̂u,H [s1], ..., σ̂u,H [sn]) for all p ∈ {1, ..., n}. Since j −

most(sb′k) = xbk and hbk = xb′k for all k ∈ {1, ..., l}, we have

abk = Snn(hbk , σ̂u,H [s1], ..., σ̂u,H [sn])

= Snn(xb′k , σ̂u,H [s1], ..., xbk , ..., σ̂u,H [sn]) ; where xbk ∈ var(sb′k).

= xbk .

Then

(σt,F ◦r σu,H ◦r σt,F )(γ) = σ̂t,F [γ(a1, ..., an)]

= Rnn(F, σ̂t,F [a1], ..., xbk , ..., σ̂t,F [an])

where xbk ∈ var(sb′k) for all k = 1, ..., l

= σt,F (γ).

Therefore σt,F is unit-regular. Similarly, (ii) can be proved as in (i).

Lemma 5. Let t = f(t1, ..., tm) ∈ W(m)(Xm) and F = γ(s1, ...., sn) ∈

γF((m),(n))(Xn) such that var(t) ∩Xm = {xa1 , ...., xak} with ta′i = xai for

some a′i ∈ {1, ...,m} ; i ∈ {1, ..., k} and var(F ) ∩Xn = {xb1 , ...., xbl} with

sb′j = xbj for some b′j ∈ {1, ..., n} ; j ∈ {1, ..., l}.

Then σt,F ◦r σu,H ◦r σt,F = σt,F if and only if u = f(u1, ..., um) which

ua1 = xa′1 , ..., uak = xa′k and H = γ(h1, ..., hn) which hb1 = xb′1 , ..., hbl =

xb′l .
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Proof. Assume that σt,F ◦r σu,H ◦r σt,F = σt,F .

Let u = f(u1, ..., um). Suppose that uai ∈ W(m)(Xm)\{xa′i} for some i ∈

{1, ..., k}. Let H = γ(h1, ..., hn). Suppose that hbj ∈ W((m),(n))(Xn)\{xb′j}

for some j ∈ {1, ..., l}.

Consider

(σt,F ◦r σu,H ◦r σt,F )(f) = σ̂t,F [σ̂u,H [t]]

= σ̂t,F [Smm(f(u1, ..., um), σ̂u,H [t1], ..., σ̂u,H [tm])]

= σ̂t,F [f(w1, ..., wm)]

where

wi = Smm(ui, σ̂u,H [t1], ..., σ̂u,H [tm])

= f(v1, ..., vm) where vi = Smm(ti, σ̂t,F [w1], ..., σ̂t,F [wm]).

Since ta′i = xai ; i ∈ {1, ..., k}, we have

va′i = Smm(ta′i , σ̂t,F [w1], ..., σ̂t,F [wm]) = σ̂t,F [wai ].

Since wai = Smm(uai , σ̂u,H [t1], ..., σ̂u,H [tm]) and uai 6= xa′i , we have wai 6=

σ̂u,H [ta′i ] = xa1 . We get va′i = σ̂t,F [wai ] 6= xa1 and then f(v1, ..., vm) 6= t,

this is a contradiction.

Hence uai = xa′i for all i ∈ {1, ..., k}.

Similarly, we have

(σt,F ◦r σu,H ◦r σt,F )(γ) = σt,F (γ).

Therefore hbj = xb′j for all j ∈ {1, ..., l}.

Conversely, let u = f(u1, ..., um) where uai = xa′i for all i ∈ {1, ..., k}

and h = γ(h1, ..., hn) where hbj = xb′j for all j ∈ {1, ..., l}. Then (σt,F ◦r
σu,H ◦r σt,F )(f)
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= σ̂t,F [f(w1, ..., wm)] where wi = Smm(ui, σ̂u,H [t1], ..., σ̂u,H [tm]). Since uai =

xa′i , so

wai = Smm(uai , σ̂u,H [t1], ..., σ̂u,H [tm])

= Smm(xa′i , σ̂u,H [t1], ..., σ̂u,H [tm])

= σ̂u,H [ta′i ]

= xai .

We get

σ̂t,F [f(w1, ..., wm)] = Smm(f(t1, .., tm), σ̂t,F [w1], ..., σ̂t,F [wm]) = f(t1, ..., tm).

Hence (σt,F ◦r σu,H ◦r σt,F )(f) = (σt,F )(f).

Similarly, we get (σt,F ◦r σu,H ◦r σt,F )(γ) = (σt,F )(γ).

Let σt,F ∈ Relhyp((m), (n)), we denote

R′X := {σt,F |t = xi ∈ Xm and F = γ(s1, ..., sn) with var(F ) =

{xb1 , ..., xbl}

such that i−most(sb′k) = xbk for all k = 1, ..., l and some distinct b
′

1, ..., b
′

l ∈

{1, ..., n} where i ∈ {1, ...,m}}.

Theorem 2.R′X∪RT is the set of all unit-regular elements in Relhyp((m), (n)).

Proof. Let σt,F ∈ R′X ∪RT .

Case I. σt,F ∈ R′X . Then t = xi and F = γ(s1, ..., sn) ∈ γF((m),(n))(Xn)

with var(F ) = {xb1 , ..., xbl} such that i−most(sb′k) = xbk for all k = 1, ..., l

and some distinct b
′

1, ..., b
′

l ∈ {1, ..., n} where i ∈ {1, ...,m}.

Choose σu,H ∈ U(Relhyp((m), (n))) such that

u = f(u1, ..., um) = f(xµ(1), ..., xµ(m))

and H = γ(h1, ..., hn) = γ(xν(1), ..., xν(n)) for some µ ∈ Sm, ν ∈ Sn such

that µ(i) = i and ν(b
′

1) = b1, ..., ν(b
′

n) = bn.
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Then ui = xµ(i) = xi and Hb
′
j

= xν(b′j)
= xbj for all j ∈ {1, .., l}.

By Lemma 4, we get

σt,F ◦r σu,H ◦r σt,F = σt,F .

Case II. σt,F ∈ RT where t = f(t1, . . . , tm) and F = γ(s1, ..., sn) with var(t)

= {xa1 , ..., xak} and var(F ) = {xb1 , ..., xbl} such that ta′i = xai and sb′j =

xbj for all i = 1, ..., k, j = 1, ..., l for some distinct a
′

1, ..., a
′

k ∈ {1, ...,m} and

for some distinct b
′

1, ..., b
′

l ∈ {1, ..., n}.

Choose σv,G ∈ U(Relhyp((m), (n))) such that

v = f(v1, ..., vm) = f(xβ(1), · · · , xβ(m))

and

G = γ(g1, ..., gn) = γ(xα(1), ..., xα(n))

for some β ∈ Sm, α ∈ Sn such that

β(a1) = a′1, ..., β(am) = a′m

and

α(b
′

1) = b1, ..., α(b
′

n) = bn.

Then va′i
= xβ(a′i)

= xai for all i ∈ {1, .., k} and gb′j
= xα(b′j)

= xbj for all

j ∈ {1, .., l}.

By Lemma 5, we get

σt,F ◦r σv,G ◦r σt,F = σt,F .

Hence σt,F is a unit-regular element in Relhyp((m), (n)).
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3. Conclusion

In the present paper, we began with the definition of a relational

hypersubstitution for algebraic systems of type (τ, τ ′) and introduced the

monoid (Relhyp(τ, τ ′), ◦r, σid).

Finally, we determined all unit-regular elements on the monoid(Relhyp

((m), (n)), ◦r, σid) for arbitrary natural numbers m,n ≥ 2.

We concluded that σt,F ∈ Relhyp((m), (n)) is unit-regular if and only

if σt,F ∈ R′X ∪RT where

R′X := {σt,F |t = xi ∈ Xm

and

F = γ(s1, ..., sn) withvar(F ) = {xb1 , ..., xbl}

such that i−most(sb′k) = xbk for all k = 1, ..., l and somedistinct b
′

1, ..., b
′

l ∈

{1, ..., n} where i ∈ {1, ...,m}} and RT := {σt,F | t = f(t1, . . . , tm) and F =

γ(s1, ..., sn) with var(t) = {xa1 , ..., xak} and var(F ) = {xb1 , ..., xbl} such that

ta′i = xai and sb′j = xbj for all i = 1, ..., k, j = 1, ..., l for some distinct a′1, ..., a
′
k

∈ {1, ...,m} and for some distinct b′1, ..., b
′
l ∈ {1, ..., n}}.
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